skip to main content


Search for: All records

Creators/Authors contains: "Rocklin, D. Zeb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Locomotion by shape changes or gas expulsion is assumed to require environmental interaction, due to conservation of momentum. However, as first noted in [J. Wisdom, Science 299, 1865-1869 (2003)] and later in [E. Guéron, Sci. Am . 301, 38-45 (2009)] and [J. Avron, O. Kenneth, New J. Phys , 8, 68 (2006)], the noncommutativity of translations permits translation without momentum exchange in either gravitationally curved spacetime or the curved surfaces encountered by locomotors in real-world environments. To realize this idea which remained unvalidated in experiments for almost 20 y, we show that a precision robophysical apparatus consisting of motors driven on curved tracks (and thereby confined to a spherical surface without a solid substrate) can self-propel without environmental momentum exchange. It produces shape changes comparable to the environment’s inverse curvatures and generates movement of 10 − 1  cm per gait. While this simple geometric effect predominates over short time, eventually the dissipative (frictional) and conservative forces, ubiquitous in real systems, couple to it to generate an emergent dynamics in which the swimming motion produces a force that is counter-balanced against residual gravitational forces. In this way, the robot both swims forward without momentum and becomes fixed in place with a finite momentum that can be released by ceasing the swimming motion. We envision that our work will be of use in a broad variety of contexts, such as active matter in curved space and robots navigating real-world environments with curved surfaces. 
    more » « less
  2. We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell–Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origami’s vertices. This supports the recent result by Tachi [T. Tachi,Origami6, 97–108 (2015)] which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero-energy deformations in the bulk that may be used to reconfigure the origami sheet.

     
    more » « less
  3. Limbless animals like snakes inhabit most terrestrial environments, generating thrust to overcome drag on the elongate body via contacts with heterogeneities. The complex body postures of some snakes and the unknown physics of most terrestrial materials frustrates understanding of strategies for effective locomotion. As a result, little is known about how limbless animals contend with unplanned obstacle contacts. We studied a desert snake,Chionactis occipitalis, which uses a stereotyped head-to-tail traveling wave to move quickly on homogeneous sand. In laboratory experiments, we challenged snakes to move across a uniform substrate and through a regular array of force-sensitive posts. The snakes were reoriented by the array in a manner reminiscent of the matter-wave diffraction of subatomic particles. Force patterns indicated the animals did not change their self-deformation pattern to avoid or grab the posts. A model using open-loop control incorporating previously described snake muscle activation patterns and body-buckling dynamics reproduced the observed patterns, suggesting a similar control strategy may be used by the animals. Our results reveal how passive dynamics can benefit limbless locomotors by allowing robust transit in heterogeneous environments with minimal sensing.

     
    more » « less